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Abstract

Background—We postulated that the hypoxic response in sickle cell disease (SCD) contributes 

to altered gene expression and pulmonary hypertension, a complication associated with early 

mortality.

Methods and Results—To identify genes regulated by the hypoxic response and not other 

effects of chronic anemia, we compared expression variation in peripheral blood mononuclear 

cells from 13 SCD subjects with hemoglobin SS genotype and 15 Chuvash polycythemia subjects 

(VHLR200W homozygotes with constitutive up-regulation of hypoxia inducible factors in the 

absence of anemia or hypoxia). At 5% false discovery rate, 1040 genes exhibited >1.15 fold 

change in both conditions; 297 were up-regulated and 743 down-regulated including MAPK8 

encoding a mitogen-activated protein kinase important for apoptosis, T-cell differentiation and 

inflammatory responses. Association mapping with a focus on local regulatory polymorphisms in 

61 SCD patients identified expression quantitative trait loci (eQTL) for 103 of these hypoxia 

response genes. In a University of Illinois SCD cohort the A allele of a MAPK8 eQTL, 

rs10857560, was associated with pre-capillary pulmonary hypertension defined as mean 

pulmonary artery pressure ≥25 and pulmonary capillary wedge pressure ≤15 mm Hg at right heart 

catheterization (allele frequency=0.66; OR=13.8, P=0.00036, n=238). This association was 

confirmed in an independent Walk-PHaSST cohort (allele frequency=0.65; OR=11.3, P=0.0025, 

n=519). The homozygous AA genotype of rs10857560 was associated with decreased MAPK8 

expression and present in all 14 identified pre-capillary pulmonary hypertension cases among the 

combined 757 patients.

Conclusions—Our study demonstrates a prominent hypoxic transcription component in SCD 

and a MAPK8 eQTL associated with pre-capillary pulmonary hypertension.
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Sickle cell disease (SCD) is due to homozygosity for a Glu6Val mutation in HBB (sickle cell 

anemia; hemoglobin SS) or to compound heterozygous forms like hemoglobin SC disease 

and hemoglobin S-β thalassemia. Investigation of the pathophysiology of SCD 

complications has focused on the adverse effects of vaso-occlusion, chronic inflammation, 

and hemolysis.1 Little attention has been given to the up-regulation of the hypoxic response. 

Erythropoietin expression sensitively reflects tissue oxygenation status,2 and hypoxia 

inducible factor (HIF)-α, the master regulator of the body's response to hypoxia, was 

discovered by studying the regulation of the erythropoietin gene.3 SCD is characterized by 

high circulating erythropoietin concentrations under basal circumstances,4 indicating that 

this chronic anemia is accompanied by chronic up-regulation of the hypoxic response. 

Hypoxia influences diverse cellular and metabolic processes,5 and both chronic and acute 

hypoxia cause morbidity and mortality associated with pulmonary and brain edema, aberrant 

metabolism, and pulmonary hypertension.6, 7

A substantial body of evidence also indicates that normoxic activation of HIF-1α is involved 

in the etiology of various forms of group 1 pulmonary hypertension through changes in 
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mitochondrial redox signaling, fission and numbers, and is critical to the development of a 

proliferative, apoptosis-resistant phenotype in pulmonary vascular cells.8-10 Furthermore, 

placental growth factor activates HIF-1α in normoxia and has been associated with elevated 

systolic pulmonary artery pressures in SCD.11 Hypoxia has broad effects on gene 

expression, but this phenomenon has been almost entirely investigated in vitro12 or in 

animal models.13 We postulated that the up-regulated hypoxic response in SCD might 

contribute substantially to altered gene expression and to pulmonary hypertension, an 

important clinical complication that is associated with early mortality.14

To address this hypothesis, we prospectively compared clinical data and genomic profiles of 

SCD and Chuvash polycythemia (CP) subjects. Similar to SCD, CP is a monogenic 

hematologic disorder characterized by an up-regulated hypoxic response.15 Unlike SCD, CP 

patients are not anemic and the hypoxic response occurs at normoxia. Specifically, 

homozygosity for the VHLR200W mutation leads to post-translational stabilization of the 

alpha subunits of HIF at normoxia via decreased binding of these subunits to the mutant 

VHL protein, which normally marks them for destruction through the proteasome.15, 16 As 

the result, increased levels of HIF-1 and HIF-2 lead to altered transcription of a number of 

genes.15 Given the lack of the confounding effect of anemia to the presence of the hypoxic 

response in CP, we leveraged this characteristic to investigate the contribution of the 

hypoxic response in SCD.

Materials and Methods

Study strategy

The study was prospectively designed to compare clinical manifestations and peripheral 

blood mononuclear cell (PBMC) genomic profiles of SCD and CP subjects with the 

hypothesis that shared hypoxia-induced pathways may underlie the risk for pulmonary 

hypertension. The scheme of the study is summarized in Figure 1. We first identified altered 

gene expression associated with SCD by comparing 13 African-American hemoglobin SS 

subjects and 16 African-American hemoglobin AA control individuals. On the same array 

platform we profiled hypoxia-induced gene expression under normoxia by comparing 15 

Chuvash VHLR200W homozygotes and 16 Chuvash VHL wildtype individuals. Intersecting 

the two sets of genes identified hypoxia-induced gene expression in hemoglobin SS subjects. 

We further mapped expression quantitative trait loci (eQTL) for these genes in SCD patients 

and carried out genetic association between the identified eQTL and pulmonary 

hypertension phenotypes in two additional SCD cohorts.

Study subjects

The study was approved by the IRBs of the participating institutions and all subjects 

provided written informed consent.

Howard University cohort—Thirty-three hemoglobin SS, seven hemoglobin SC, two 

hemoglobin Sβ+-thalassemia and 17 hemoglobin AA adult African-Americans subjects were 

studied.
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Chuvash polycythemia (CP) cohort—Fifteen VHLR200W homozygotes and 16 

wildtype controls from Chuvashia, Russia with serum ferritin concentration ≥21 μg/L were 

studied.

University of Chicago cohort—Twenty-four hemoglobin SS individuals17 were 

included for determining hypoxic expression quantitative trait loci (eQTL).

University of Illinois at Chicago (UIC) cohort—One hundred eighty-two hemoglobin 

SS, 43 hemoglobin SC, 15 hemoglobin Sβ+-thalassemia, six hemoglobin Sβ0-thalassemia, 

one hemoglobin SO Arab subjects were tested for genetic association between eQTL and 

pulmonary hypertension. Genotyping was carried out using Affymetrix Axiom genome-

wide Pan-African array. Genotype information in the ∼1 Mb regions around each of 103 

target genes was used to impute genotypes at the identified eQTL. Only these eQTL 

genotypes were used in clinical associations. Twenty-seven subjects with elevated tricuspid 

regurgitation velocity (TRV) and clinical suspicion of pulmonary hypertension underwent 

right heart catheterization: eight had pre-capillary pulmonary hypertension defined as mean 

pulmonary artery pressure (PAP) ≥25 mm Hg and pulmonary capillary wedge pressure 

(PCWP) ≤15 mm Hg, nine had post-capillary pulmonary hypertension defined as mean PAP 

≥25 mm Hg and PCWP >15 mm Hg, and 10 did not have pulmonary hypertension based on 

mean PAP <25 mm Hg. Absence of pulmonary hypertension was defined as mean PAP <25 

mm Hg if right heart catheterization was performed or TRV <2.5 m/sec if catheterization 

was not performed.

Walk-PHaSST cohort—Clinical phenotypes and genotype data for SNPs located within 

the MAPK8 gene and its ±500 Kb flanking regions were obtained for 393 hemoglobin SS, 

99 hemoglobin SC, 19 hemoglobin Sβ0-thalassemia and 11 hemoglobin Sβ+-thalassemia 

subjects from the Walk–Treatment of Pulmonary Hypertension and Sickle Cell Disease with 

Sildenafil Therapy (Walk-PHaSST) study.4 Patients recruited at UIC were excluded from 

this analysis to avoid overlap with the UIC cohort. A subgroup of 17 of the 56 subjects with 

TRV ≥3.0 m/sec underwent right heart catheterization, and pre-capillary and post-capillary 

pulmonary hypertension were defined as above. Six of these subjects had pre-capillary 

pulmonary hypertension, three had post-capillary pulmonary hypertension and eight had 

mean PAP <25 mm Hg. Genotyping was carried out using Illumina Human 610-Quad SNP 

array.

Clinical testing

Serum ferritin concentration was determined by enzyme immunoassay (Ramco Laboratories 

Inc., Stafford, TX) and serum erythropoietin (EPO) by enzyme linked immunosorbent assay 

(ELISA) (R&D Systems, Minneapolis, MN). Echocardiography measurements were 

performed according to American Society of Echocardiography guidelines.18

RNA isolation and expression profiling

PBMCs were isolated from 10 ml of EDTA-anticoagulated blood. Total RNA was extracted 

using TRIzol® (Invitrogen, CA) and quality assessed using nanodrop (Thermoscientific, 

Waltham, MA) and Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Total 
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RNA was submitted to University of Chicago Functional Genomics Center for whole 

transcript sense target labeling assay, hybridization to the Affymetrix Human Exon 1.0 ST 

Array, and washing and scanning (Affymetrix, Inc., Santa Clara, CA).

Microarray data preprocessing

Twenty-five-mer probe sequences were aligned to human genome assembly GRCh37 

allowing ≤2 mismatches.19 Probes with perfect unique match to the genome were selected. 

We removed probes that interrogated multiple gene transcripts and that contained SNPs with 

≥1% minor allele frequency in dbSNP dataset (v135). Probe level intensities were log2 

transformed, background corrected20 and quantile normalized.21 Probe intensity was 

subtracted by the corresponding probe mean across samples. Gene-level expression 

intensities were summarized as mean probe intensity within each transcript cluster. In total, 

16,642 autosomal transcript clusters (gene-level) were included.

Statistical analysis of clinical data and gene expression variation

Wilcoxon's rank sum test and Fisher's exact test were applied for comparison of continuous 

and categorical clinical covariates, respectively, between patients and controls for both the 

CP and Howard University SCD cohorts. To compare gene expression levels between two 

groups (VHLR200W homozygote subjects versus VHL wildtype controls, hydroxyurea-treated 

versus non-treated hemoglobin SS individuals, or hemoglobin SS versus hemoglobin AA), 

for each gene we tested the null hypothesis H0: expressiongroup1= expressiongroup2. A d-

statistic22 was calculated for each gene. The d-statistic is a modified t-statistic that stabilizes 

statistical variance for low expression genes thereby improving across-gene comparison. We 

performed 100 permutations to estimate false discovery rate (FDR).23 Statistical analyses 

were carried out using R.24

eQTL mapping

Twenty-eight hemoglobin SS, seven hemoglobin SC and two hemoglobin Sβ+-thalassemia 

subjects from Howard University and 24 hemoglobin SS patients from the University of 

Chicago were pooled. Batch effect of two hybridization batches was corrected by an 

empirical Bayes approach implemented in ComBat25. Affymetrix Genome-Wide Human 

SNP Array 6.0 was used for SNP genotyping. Among the 868,157 autosomal SNPs, 94% 

had call rate > 90% across the 61 samples. The per sample genotype rate was > 91% with a 

median of 98%. Considering our small sample size, we analyzed SNPs with 100% call rate. 

SNPs with known autosomal locations, minor allele frequency >10%, and not significantly 

deviated from Hardy–Weinberg equilibrium (P >10-4) were selected, resulting in 321,919 

SNPs. To test for heterogeneity in ancestral admixture among the 61 subjects, we selected 

148,365 SNPs for principal component analysis26, which were pruned from the 321,919 

SNPs by pair-wise r2 >0.3 using PLINK 27. A total of 27,717 SNPs were local to 1,040 

hypoxia response genes, defined as SNPs located in the regions from upstream 100 Kb of 

gene start to downstream 100 Kb of gene stop. We also carried out principal component 

analysis for the expression data of the analyzed 15,775 genes, and the top 11 axes were 

regressed out to improve detection sensitivity. Gene expression levels were regressed on 

allelic dosage of SNP. To estimate FDR, sample labels were permuted 100 times for gene 
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expression traits. Hypoxic eQTL with FDR <0.05 were then pruned by linkage 

disequilibrium (LD, r2 >0.3).

Association mapping of hypoxic eQTL with clinical phenotypes

SNPs within the target genes of eQTL and their +/- 500Kb flanking regions were imputed 

for both UIC and Walk-PHaSST cohorts, using HapMap Phase II panels as reference.28 

Armitage trend test and logistic regression were applied to test the association between 

eQTL and pulmonary hypertension phenotypes in the UIC and Walk-PHaSST SCD cohorts 

with an additive genetic model. In logistic regression, age and SCD genotype (hemoglobin 

SS/ Sβ0-thalassemia/SO Arab or hemoglobin SC /Sβ+ thalassemia) were included as 

covariates. For the UIC cohort, the top five principal components estimated from genome-

wide SNP data were also included in the logistic linear model to account for population 

stratification. The Walk-PHaSST cohort was relatively homogenous for population 

stratification as previously reported.29

Hypoxic transcription in pre-capillary pulmonary hypertension

We selected seven SCD patients diagnosed with pre-capillary pulmonary hypertension and 

seven hemoglobin AA African-American control individuals. Total RNA, 500-2,000 ng, 

was reverse transcribed by Superscript III reverse transcriptase in 20 μL reactions using 

Oligo(dT)12-18 primers (Invitrogen, Carlsbad, CA). Gene specific primers were obtained 

from a primer database30 and further selected against regions containing multiple gene 

transcripts or SNPs. Primers were tested by polymerase chain reaction (PCR) in 10 μL 

reactions using Platinum Taq DNA polymerase (Invitrogen, Carlsbad , CA) followed by 

running on 3% agrose gel. For quantitative PCR, a standard curve method was applied. 

cDNA for each sample was diluted at 1:20, 4 μL of which was used with iTaq Universal 

SYBR Green Supermix (BIO-RAD, Hercules, CA) in 10 μL reactions. A fast thermal 

cycling protocol was applied using the Applied Biosystems ViiA™ 7 real-time PCR system 

(Applied Biosystems, Foster City, CA) at 95° for 30 sec, followed by 40 cycles at 95° for 3 

sec and 60° for 30 sec. For each sample/gene pair, cycling thresholds were estimated as the 

average of duplicate reactions. The specificity of the quantitative PCR was further 

confirmed by melting curve analysis.

Results

Altered gene expression in sickle cell anemia

Howard University sickle cell anemia subjects had lower hemoglobin concentrations and 

hemoglobin O2 saturations and higher concentrations of erythropoietin, ferritin and markers 

of hemolysis than control subjects (Supplemental Table 1). This cohort prospectively 

included a proportion of patients with high TRV. Seven hemoglobin SC and two 

hemoglobin Sβ+-thalassemia individuals were also among this cohort (Supplemental Table 

2).

Comparison of PBMC gene expression between 20 hemoglobin SS patients with and 13 

without hydroxyurea treatment revealed a large number of genes mildly suppressed by 

hydroxyurea treatment (Supplemental Figure 1). We therefore excluded those on 

Zhang et al. Page 6

Circulation. Author manuscript; available in PMC 2015 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hydroxyurea treatment from further analysis. The final cohort consisted of 13 hemoglobin 

SS patients and 16 hemoglobin AA controls (one hemoglobin AA individual was excluded 

due to iron deficiency) matched for age (P>0.9) and gender (P=0.7). More than 10,000 

genes exhibited altered expression in hemoglobin SS patients at FDR 0.05, the majority 

showing modest up-regulation (Figure 2A). Using a threshold of FDR <0.05 and >1.15 fold 

change, 784 genes were up-regulated genes (Supplemental Table 3) and 1,245 down-

regulated (Supplemental Table 4) in hemoglobin SS patients. KEGG (Kyoto Encyclopedia 

of Genes and Genomes) pathways and GO (Gene Ontology) biological processes that were 

significantly altered in hemoglobin SS subjects are shown in Supplemental Table 5. KEGG 

hematopoietic cell lineage, NOD-like receptor signaling, and complement and coagulation 

cascades pathways were significantly enriched in up-regulated genes whereas T cell receptor 

signaling, aminoacyl-tRNA biosynthesis, taste transduction, and cell cycle pathways were 

significantly enriched in down-regulated genes (Padjusted <0.05, fold enrichment >2.5).

Hypoxic transcriptional response in sickle cell anemia

Identification of genes regulated by the hypoxic response in VHLR200W 

homozygotes—To identify genes specifically regulated by the hypoxic response and not 

other effects of chronic anemia, we prospectively studied a Chuvash polycythemia (CP) 

cohort consisting of 15 VHLR200W homozygotes with elevated hemoglobin and serum EPO 

concentrations15 and 16 VHL wildtype controls (Supplemental Table 6). Similar to the 

Howard University hemoglobin SS cohort, this cohort prospectively included a high 

proportion of patients with elevated TRV. Gene expression of PBMCs was profiled on 

Affymetrix exon array in an identical manner to the hemoglobin SS cohort. Similar to the 

hemoglobin SS cohort, expression levels of about 10,000 genes were altered in VHLR200W 

homozygotes at 5% FDR, the majority with modest up-regulation (Figure 2A). Using a 

threshold of 1.15 fold change, 474 genes were induced and 1,194 genes were suppressed in 

VHLR200W homozygotes.

Common transcriptional responses in sickle cell anemia and Chuvash 
polycythemia—Similar to hemoglobin SS patients, the KEGG T cell receptor signaling 

pathway was significantly enriched with genes down-regulated in the CP patients. 

Furthermore, ‘inflammatory response’ and ‘negative regulation of apoptosis’ were among 

seven GO biological processes enriched with up-regulated genes in both hemoglobin SS and 

CP subjects (Padjust <0.05, fold enrichment >2.5, Supplemental Table 5). Regression 

coefficients of differential gene expression were highly correlated between sickle cell 

anemia and CP (Spearman's ρ=0.73) (Figure 1B), suggesting that 53% of expression 

variation in hemoglobin SS patients is related to hypoxic transcriptional responses. Applying 

thresholds of FDR <0.05 and fold change >1.15, 1,040 genes displayed altered regulation in 

both hemoglobin SS patients and VHLR200W homozygotes, with 297 up-regulated (hypoxia-

induced, Supplemental Table 7) and 743 down-regulated (hypoxia-suppressed, 

Supplemental Table 8). These common genes, which we hereafter refer to as hypoxia 

response genes, represented 51% of the altered genes in the hemoglobin SS patients and 

63% in the VHLR200W homozygotes. To verify the specificity of the hypoxic response genes 

identified under these conditions, we compared the genomic profile of hemoglobin SS with 

that of Down syndrome, a congenital condition with no involvement of a canonical hypoxia 
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pathway, in a publicly available PBMC expression dataset using the same array platform.31 

We did not observe any correlation between expression variation in hemoglobin SS and 

Down syndrome subjects (Figure 2C).

To further explore the gene regulation cascades, we mapped the hypoxia response genes to 

the Reactome functional interaction database32 and identified several hub genes that may 

play important roles in gene-gene interactions (Figure 3). MAPK8 interacted with the 

greatest number of genes in the network. Down-regulation of MAPK8 and its directly 

interacting partners ATF2, and MAP3K7 are consistent with a suppression of stress-induced 

apoptosis, while down-regulation of STAT4 and subunits of the T-cell receptor complex are 

consistent with a suppression of T-cell activation.

HIF-1 target genes induced in sickle cell anemia—To search for corroboration of an 

over-representation of hypoxic transcriptional responses in sickle cell anemia we examined 

the expression of HIF1A (hypoxia inducible factor 1, alpha subunit) and known genes 

regulated by HIF. HIF1A was induced in hemoglobin SS patients by 1.3 fold at FDR 0.05, 

although, as expected, not in VHLR200W homozygotes who were not anemic. In addition, 

genes up-regulated >1.15-fold in hemoglobin SS patients were enriched for known targets of 

HIF33 by 6.4-fold (binomial test P=8×10-13). Genes up-regulated in Hb SS subjects were 

also enriched for hypoxia response genes expressed in vascular endothelial cells12 by 2.5-

fold (binomial test P= 0.00024).

Genetic regulation of hypoxic response genes in SCD patients

To assess the genetic contribution to hypoxic transcriptional variation among SCD patients, 

we mapped eQTL for the 1,040 hypoxia response genes. For the Howard University SCD 

cohort we obtained both gene expression and whole genome genotyping data for 37 

individuals, including 28 hemoglobin SS, seven hemoglobin SC and two hemoglobin Sβ+-

thalassemia patients. These data were pooled with expression and genotype data of 24 

hemoglobin SS patients from the University of Chicago cohort. Principal component 

analysis26 of 148,365 SNPs suggested little heterogeneity in ancestral admixture among the 

61 subjects (Supplemental Figure 2). We associated gene expression levels of the 1,040 

hypoxia response genes with allelic dosage of 27,717 local SNPs, defined as SNPs 

positioned within ± 100 Kb of target genes. We focused on local SNPs because local 

regulatory polymorphisms have strong effects on gene expression in general, and because 

the restricted analysis greatly reduced the burden of multiple comparisons. At 5% FDR, 25 

eQTL were detected for 15 hypoxia-induced genes and 276 eQTL were detected for 88 

hypoxia-suppressed genes. After pruning for LD (r2 > 0.3), we identified 126 hypoxic eQTL 

(Supplemental Table 9).

Association between risk for pre-capillary pulmonary hypertension and a MAPK8 eQTL

Pulmonary hypertension documented by right heart catheterization is associated with early 

mortality in patients with sickle cell anemia.14, 34, 35 Because hypoxic transcriptional 

response may constitute an important pathogenic condition for SCD progression, hypoxic 

eQTL potentially underlie heterogeneity in risk of pulmonary hypertension. To test this 

hypothesis, we examined the association between hypoxic eQTL and pulmonary 
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hypertension phenotypes in an independent UIC cohort in which right heart catheterization 

measurements were available. For direct comparison, we imputed eQTL genotypes for the 

UIC cohort. Genotypes for 109 eQTL were imputed with high quality (imputation r2 >0.9) 

for 92 hypoxic genes. We tested three pulmonary hypertension-related phenotypes defined 

in Methods: pulmonary hypertension, pre-capillary pulmonary hypertension, and post-

capillary pulmonary hypertension. Setting a threshold of P <0.05 after Bonferroni 

correction, an association between the A allele of MAPK8 eQTL rs10857560 and pre-

capillary pulmonary hypertension was detected among all analyzed patients (OR=13.8, 

nominal P=0.00036, n=238) using a logistic regression model in which age and hemoglobin 

genotype, two known pulmonary hypertension predictors, were included as covariates. 

Significant associations were not found for the categories of pulmonary hypertension and 

post-capillary pulmonary hypertension.

To validate the results we further tested the association of rs10857560 with pre-capillary 

pulmonary hypertension in an additional independent cohort. We imputed genotype for 

rs10857560 (imputation r2=0.99) in the Walk-PHaSST cohort. With adjustment for age and 

hemoglobin genotype, the A allele of rs10857560 was significantly associated with pre-

capillary pulmonary hypertension with consistent allelic direction as observed in the UIC 

cohort (OR=11.3, P= 0.0025, n=519, see Table 1 for details). The A allele of rs10857560 is 

the ancestral allele and had frequencies of 0.66 in the UIC cohort and 0.65 in the Walk-

PHaSST cohort. This allele was associated with low MAPK8 expression (Figure 4A). The 

relationship between the A allele and pre-capillary pulmonary hypertension in the combined 

UIC and Walk-PHaSST cohorts is depicted in Figure 4B. The homozygous AA genotype of 

rs10857560 was present in all 14 identified pre-capillary pulmonary hypertension cases 

versus 310 (42%) of the 743 SCD patients among whom pre-capillary pulmonary 

hypertension was not identified (P=6×10-6 by the Fisher exact test). Plotting the association 

P values of expression (Figure 4C) and pre-capillary pulmonary hypertension (Figure 4D) 

phenotypes in a ∼1 Mb region revealed a relatively broad association peak at MAPK8 and 

its proximal regulatory regions. Therefore, due to LD, it is unclear whether the causal 

regulatory polymorphism is located within the MAPK8 gene or its promoter. Genetic 

associations between SNPs in the MAPK8 region and pulmonary hypertension in general 

have not been reported to our knowledge.

Altered hypoxic gene expression in SCD patients with pre-capillary pulmonary 
hypertension

To confirm altered hypoxic transcriptional responses in the identified pre-capillary 

pulmonary hypertension cases, we selected seven SCD patients diagnosed with pre-capillary 

pulmonary hypertension and seven healthy African-American controls in the UIC cohort for 

the assessment of expression levels of 16 genes using reverse transcription (Supplemental 

Table 10) followed by quantitative PCR (RT-qPCR, Supplemental Table 11). The fold 

changes of gene expression determined by RT-qPCR highly correlated with those estimated 

by microarray profiling (Pearson's r2=0.94), with the direction of gene expression alteration 

consistent between the two platforms for all 16 genes (Figure 5). In particular, we confirmed 

the up-regulation of several known HIF targets including FECH, BNIP3L, PLAUR, and HK1 
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as well as the unexpected down-regulation of HIF targets PDK1 and ETS1 in the PBMCs of 

pre-capillary pulmonary hypertension patients.

Discussion

The results of the present study indicate that the hypoxic response is a global feature of 

sickle cell anemia, as suggested by the strong correlation of altered gene expression profiles 

in hemoglobin SS subjects and VHLR200W homozygote polycythemic subjects. Over 50% of 

PBMC gene expression variation in hemoglobin SS patients may be related to the hypoxic 

response. Most importantly, the hypoxia down-regulated gene, MAPK8, appeared to play an 

important role in hypoxic gene regulation (Figure 3) and an eQTL of this gene (rs10857560) 

was associated with right heart catheterization-documented pre-capillary pulmonary 

hypertension in SCD (Figure 4).

MAPK8, also known as JNK1, is a member of the mitogen-activated protein kinase family 

that is involved in multiple cellular processes including proliferation, differentiation and 

transcriptional regulation.36 It has a prominent role in promoting apoptosis, both through 

increasing the expression of pro-apototic genes in the nucleus and through facilitating pro-

apoptotic pathways originating in the mitochondria.37 In the present study, expression of 

MAPK8 was down-regulated in SCD and CP where the hypoxic response is up-regulated, 

and the A allele of rs10857560 was associated with a further decrease in expression in SCD. 

Homozygosity for the A allele was present in all 14 pre-capillary pulmonary hypertension 

patients we examined, suggesting that the dosage effect of the A allele on MAPK8 gene 

expression might contribute to the pathogenic mechanism of pre-capillary pulmonary 

hypertension. Abnormal proliferation of pulmonary vascular smooth muscle cells and 

resistance to apoptosis is a prominent feature of pulmonary arterial hypertension.38 

Therefore decreased MAPK8 pro-apoptotic activity in homozygotes for the A allele of 

rs10857560 is a plausible explanation for the association observed in this study.

Some other investigations are consistent with an association of decreased MAPK8 activity 

with pulmonary hypertension. Down-regulation of MAPK8 may contribute to the 

pathogenesis of IL-6-induced pulmonary hypertension in mice.39 Absence of MAPK8 in 

experimental mice is associated with preferential differentiation of Th2 versus Th1 cells and 

enhanced production of Th2 cytokines,40 and the Th2 response in mice has been associated 

with pulmonary arterial remodeling when other risk factors are present.41 TGF-β signaling 

up-regulates MAPK8 kinase activity,42 and genetic variants of BMPR2 and other genes in 

the TGF-β signaling pathway have been reported to associate with risk of pre-capillary 

pulmonary hypertension. However, MAPK8 has dual roles in activating or suppressing the 

mitochondrial apoptosis pathway and in signaling cell survival depending on the cellular 

context.43, 44 Furthermore, some studies implicate increased MAPK8 activity with 

pulmonary complications.45-47

Pre-capillary pulmonary hypertension in SCD is a complex disease to which both 

environmental and genetic variations contribute, as underscored by our finding that only a 

minority of the SCD patients with homozygosity for the MAPK8 rs10857560 A allele were 

found to have pulmonary hypertension. Besides MAPK8, genetic variants affecting the 

Zhang et al. Page 10

Circulation. Author manuscript; available in PMC 2015 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression or function of other genes in key pathways may also contribute to the 

heterogeneity in disease risk. In the present study, a number of genes that interact with 

MAPK8 (Figure 3) and inhibit apoptosis, including atf2, map3k7, map3k4, and traf5, were 

hypoxia down-regulated but we did not observe eQTLs in these genes. We validated the up-

regulation of SOD2 and BNIP3L in SCD patients with pre-capillary pulmonary 

hypertension, genes that may play anti-apoptosis roles by suppression of superoxide anion 

radical production and by repair of mitochondria damage under hypoxia conditions. Genes 

involved in inflammatory responses were induced in both VHLR200W homozygotes and 

hemoglobin SS subjects, and inflammatory pathways are implicated in some forms of 

pulmonary hypertension.10

eQTL is a key method to dissect complex traits.48 Genetic effects tend to explain a greater 

proportion of variation for gene expression phenotypes than for organism level phenotypes 

such as disease predisposition.49 The restriction to potential local eQTL in clinical 

associations in the present study effectively reduced the multiple comparisons by >1000 fold 

(321,919 SNPs versus 126 SNPs) while prioritizing the analysis toward genetic 

polymorphisms having strong phenotypic effects and clear functional interpretation.

There are a number of limitations to our study. The patients with SCD were mostly African 

Americans whereas the Chuvash subjects were Caucasians. Only a minority of patients in 

the UIC and Walk-PHaSST cohorts with echocardiographic evidence of elevated systolic 

pulmonary artery pressure underwent right heart catheterization to determine mean 

pulmonary arterial pressure. Therefore the actual prevalence of pre-capillary pulmonary 

hypertension is no doubt higher than the observed prevalence of 14 of 757 or 1.8%. Sample 

size is critical in association mapping of polygenic clinical traits such as pulmonary 

hypertension; our study may not have detected some contributing genetic variations due to 

limited sample size. Furthermore, the focus on SNPs within ±100 kb potentially excluded 

any eQTL that acts at a distance. Nevertheless, the association of decreased expression of 

MAPK8 with pre-capillary pulmonary hypertension but not post-capillary pulmonary 

hypertension in the present study points to the possible importance of MAPK8 for the health 

of the pulmonary arterial vasculature in the setting of the high flow state and hemolytic 

vasculopathy that characterize SCD.

Future studies should examine the molecular role of MAPK8 in protection from pre-capillary 

pulmonary hypertension in SCD, and whether interventions targeting this pathway can be 

developed for prevention or treatment. Genotyping for rs10857560 might also be a useful 

screening test for pre-capillary pulmonary hypertension in SCD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The schema of the study.
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Figure 2. 
Altered gene expression profiles in hemoglobin SS patients and VHLR200W homozygotes 

were highly correlated. (A) Q-Q plot of d-scores from real data against d-scores from 100 

permutations for comparison between VHLR200W and VHL wildtype (blue) and between 

hemoglobin SS and hemoglobin AA (red). The dashed lines represented thresholds at 5% 

FDR. A large number of genes showed modest up-regulation in the disease subjects, as 

indicated by the overall up-shift of d-scores relative to the null distributions. (B) Correlation 

of differential expression (regression coefficients of genes) in hemoglobin SS and 

homozygous VHLR200W. (C) Correlation of differential expression in hemoglobin SS and 

Down syndrome (C). In B and C, Spearman's ρ is presented.
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Figure 3. 
Gene regulation network of hypoxic transcription in sickle cell anemia. Genes up-regulated 

are diamond-shaped and genes down-regulated ellipse-shaped. The size of the nodes is 

proportional to their corresponding number of interactions among the network. MAPK8 is 

marked by a black border.
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Figure 4. 
Association of MAPK8 expression and risk of pre-capillary pulmonary hypertension with 

SNP rs10857560. (A) Relative expression of MAPK8 plotted against rs10857560 genotype 

in the combined Howard University and UC cohorts. (B) Pre-capillary pulmonary 

hypertension (pre-cap. PH) and non pre-capillary pulmonary (non pre-cap. PH) cases plotted 

against rs10857560 genotype in the combined UIC (blue points) and Walk-PHaSST (orange 

points) cohorts. (C) The -log10 P-value of expression association plotted against 

chromosome position for SNPs located within MAPK8 and its ±500 Kb regions. (D) The 
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combined -log10 P-value of pre-capillary pulmonary hypertension association of the UIC 

and Walk-PHaSST cohorts plotted against chromosome position for SNPs within MAPK8 

and its ±500 Kb regions. In (C) and (D) the position of rs10857560 is labeled by a red 

vertical line and the region of MAPK8 is highlighted grey.
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Figure 5. 
Hypoxic transcriptional response in SCD patients diagnosed with pre-capillary pulmonary 

hypertension. The slope of the log2 fold change estimated by RT-qPCR against the log2 fold 

change estimated by microarray is 2.4, suggesting that fold change estimated by microarray 

could be conservative compared to RT-qPCR. Alternatively, hypoxic transcription could be 

further elevated in pre-capillary pulmonary hypertension patients.
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